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Abstract

Recent evidence suggests a relationship between short-term pollution exposure and
crime, with a particular emphasis on aggressive behavior. However, the previous
analyses are limited in geographic scope. In this paper, we estimate the effect of
fine particulate air pollution (PM2.5) exposure on crime across 99% of counties in the
contiguous United States. We combine monthly data on crime, PM2.5, and satellite-
derived smoke plumes for a ten-year period. We use adjusted satellite-based land-
scape fire smoke plume data as an instrument for overall changes in PM2.5. Our find-
ings are consistent with previous research and suggest that increases in PM2.5 raise vi-
olent crime rates, and specifically assaults. Our results indicate the effect is relatively
homogeneous across the U.S. However, we find the effect is positively correlated with
county median age, suggesting older populations are more susceptible to changes in
air pollution. Our results indicate a need for more research on the physiological and
social mechanisms behind the measured effects.
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1 Introduction

Relationships between pollution exposure and adverse health outcomes have been estab-

lished by many academic disciplines. Epidemiological and public health studies docu-

ment a variety of negative health effects associated with exposure to airborne particulate

matter (PM) (Archsmith et al., 2018; Currie et al., 2014; Deryugina et al., 2016; Di et al.,

017a,b; Pope and Dockery, 1999; Pope III and Dockery, 2006; Schlenker and Walker, 2016;

Seaton et al., 1995). Beyond the direct health effects, the economics literature has also

established that air pollution exposure negatively effects cognitive function (e.g., Bishop

et al., 2018; Graff Zivin and Neidell, 2012, 2013; Lavy et al., 2014) and labor productivity

(e.g., Borgschulte et al., 2018; Graff Zivin and Neidell, 2012; Hanna and Oliva, 2015), and

imposes substantial welfare costs (Anderson, 1999; Bishop and Murphy, 2011).

Despite the considerable body of research on pollution and health outcomes, two re-

cent manuscripts have identified an overlooked impact of pollution: the effect of short-

term pollution exposure on aggression (Burkhardt et al., 2018; Herrnstadt et al., 2016).

Aggressive behavior can impose psychological costs as well as police enforcement costs

on society. However, both of the previous studies are limited in geographic scope and

do not explore effect heterogeneity.1 In this paper, we study the effect of air pollution

on aggression in 99% of U.S. counties (2,977 total counties) over a ten year period. The

geographic scope of our data allows us to test for heterogeneity in the treatment effect

across sociodemographic and regional dimensions, providing important clues towards

understanding the underlying physiological processes.

We find that a 1 µg/m3 increase in the monthly average PM2.5 increases violent crime

rates by 0.53% per month per county, which translates into an additional 327 additional

violent crimes per month on average across the contiguous U.S.2 This primary effect is

driven entirely by increases in assaults, which are indicative of impulsive and aggres-

1Herrnstadt et al. (2016) study this relationship in Chicago and Los Angeles while Burkhardt et al. (2018)
study the relationship in 391 counties in the United States.

2PM2.5 is defined as the mass concentration of particulate matter with aerodynamic diameters smaller
than 2.5 µm.
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sive behavior. However, we find no significant effect of PM2.5 on other violent or non-

violent crimes (e.g., murder, burglary). These results are consistent with previous esti-

mates (Burkhardt et al., 2018; Herrnstadt et al., 2016); and, together, our results highlight

an important social cost of pollution that is currently absent from policy discussions.

The causal mechanisms underlying the relationship between short-term pollution ex-

posure and aggression are not well understood. Research in epidemiology indicates that

pollution exposure can have short-term effects on cognitive skills, anxiety, and certain

behaviors associated with criminal or violent activities (Kioumourtzoglou et al., 2017; Lu

et al., 2018; Power et al., 2015). In light of this evidence, we hypothesize that the relation-

ship between pollution and aggression is driven by physiological processes and is thus

uniform across the U.S. and does not depend on observable sociodemographics such as

income or race.

Our second finding indicates that the effect of PM2.5 on violent crime is heterogeneous

across one key dimension, a rejection of our primary hypothesis. Though the relation-

ship between PM2.5 and violent crime is present across the entire U.S., we find statistical

differences in the relationship by median age. In particular, we find the effect is largest

in counties with older populations. The treatment effects by age bracket are statistically

different and range from 0.43%-1.3% more violent crimes per county per month for a 1

µg/m3 increase in the monthly average PM2.5. In contrast, we find the effect is largely

homogeneous across regions of the U.S. and across other sociodemographic indicators

(e.g., income, education, population), which also suggests that higher incomes do not

moderate the effect.

We merge three datasets to identify the effect of PM2.5 on crime. First, we use data

on criminal activity from the Uniform Crime Reporting Program (UCR) managed by the

Federal Bureau of Investigation (UCR, 2004). The dataset contains monthly level crime

counts for a handful of categories of crime spanning nearly all of the U.S. population be-

tween 2006-2015. Second, we merge the crime data with gridded daily pollution (PM2.5)

estimates (15 km resolution) spanning the contiguous U.S. from 2006-2015 (Burkhardt
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et al., 2018; Lassman et al., 2017). Our interpolated data provides gridded estimates (15

km grid) of PM2.5 over the entire United States for every day of the 2006-2015 period

(Lassman et al., 2017).3 Our third dataset includes data on landscape fire smoke plumes

obtained from satellite imagery. The data is produced by the National Oceanic and Atmo-

spheric Administration (NOAA) Hazard Mapping System (HMS, 2018). Smoke plumes

generated by wild and prescribed fire as well as agricultural burning can travel hundreds

or thousands of miles. We use these smoke plumes as a source of exogenous variation

for observed PM2.5.4 We also include monthly average weather data and county-by-year

fixed effects and month fixed effects to control for time-varying county specific unobserv-

ables and seasonal variation in crime and pollution.5

Our results have important implications for air pollution policy and future research.

For instance, fire-smoke induced PM2.5 is likely to increase as climate change modifies

the frequency and severity of drought and wildfires (Ford et al., 2018; IPCC, 2018; West-

erling et al., 2006). The increase in fire smoke will impose significant costs on society

via higher health care costs, lower labor productivity (Adhvaryu et al., 2019; Borgschulte

et al., 2018; Chang et al., 2019; Graff Zivin and Neidell, 2012; Zahran et al., 2017), and

possible increased anxiety and psychological stress (Power et al., 2015; Sass et al., 2017).

Our paper adds to this list of costs by highlighting the extent to which pollution can lead

to aggressive behavior.

PM is a mixture of many different organic and inorganic chemical components (Austin

et al., 2013; Craig et al., 2012; Naeher et al., 2007; Sillanpää et al., 2006; Valavanidis et al.,

2008) and specific constituents of PM can lead to systemic inflammation that is associ-

ated with adverse health outcomes (Bell et al., 2009; Brook et al., 2010; Godleski et al.,

2000; Libby et al., 2002; Nemmar et al., 2002; Pope III et al., 2004; Schwartz, 2001; Seaton

3The EPA pollution monitor data is limited to monitor locations and is not collected on all calendar
days. Not all counties have a pollution monitor.

4Although most fire smoke plumes are visible from space, correlating observed smoke plumes with
surface-level PM2.5 is a notoriously difficult problem in the atmospheric sciences (Brey et al., 2018; Lassman
et al., 2017). Satellite-observed smoke plumes may not affect surface-level PM2.5. We ultimately develop a
method to correct this measurement error and we describe this methodology in Section 3.

5The results are robust to county-by-year-by-season fixed effects.
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et al., 1999; Zahran et al., 2017). Thus, regional differences in the measured effects may

be attributable to regional differences in the composition of PM2.5. However, our results

indicate a lack of statistically significant differences across regions, indicating particulate

matter composition is not a significant factor.6

Our research also relates to a relatively large and broad literature on criminal behavior

(Anderson, 1999; Bishop and Murphy, 2011). Criminal activity is influenced by the prob-

ability of arrest (Becker, 1968), the outcome of Sunday night football games (Card and

Dahl, 2011), seasonal variation in daylight (Doleac and Sanders, 2015), and increased oil

and gas employment (James and Smith, 2017; Komarek, 2018). Other papers have iden-

tified a relationship between heat and crime (Blakeslee and Fishman, 2018; Field, 1992;

Jacob et al., 2007; Mapou et al., 2017; Ranson, 2014). However, we are aware of only one

published (Lu et al., 2018) and two currently unpublished manuscripts that identify a

relationship between pollution and crime (Burkhardt et al., 2018; Herrnstadt et al., 2016).

Lu et al. (2018) document correlation between air pollutants and crime rates measured

annually. While causal identification is challenging with annual data, they report positive

correlations between air pollution and crime. Herrnstadt et al. (2016) exploit wind pat-

terns to show that short-term increases in air pollution increase violent crime in Chicago

and Los Angeles.7 Burkhardt et al. (2018) use daily crime data from the FBI’s National In-

cident Based Reporting System (NIBRS), combined with similar pollution and fire smoke

plume data used in the present study, to identify the effect of daily variation in PM2.5 on

violent crime. The drawback of the NIBRS data is that counties are not required to re-

port daily criminal activity, which leads to a selection problem and limits the geographic

scope of analysis. Specifically, Burkhardt et al. (2018) evaluate the effect of changes in

PM2.5 on crime across only 561 counties with notably large exclusions such as New York,

Chicago, and Los Angeles. However, the benefit of the NIBRS data is that it is reported at

6We should note that the lack of statistical significance across regions could be due to a mismatch be-
tween the Census Bureau regions used in this paper and regional PM composition, or other measurement
error.

7Several other studies have used upwind pollution as a source of exogenous variation (e.g., Deryugina
et al., 2016; Keiser et al., 2018; Moeltner et al., 2013).
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the daily-level, which allows for more detailed temporal analysis.

Our study differs from and complements Herrnstadt et al. (2016) and Burkhardt et al.

(2018) in three ways. First, we use data from 99% of all U.S. counties, which eliminates

any potential selection problems. Second, our analysis evaluates regional and sociodemo-

graphic heterogeneity, which highlights important differences across the U.S. and begins

to narrow in on the causal mechanisms driving this new result. Lastly, we find remarkably

similar effects to those of Herrnstadt et al. (2016) and Burkhardt et al. (2018), corroborat-

ing these relatively new findings.

The remainder of the paper proceeds as follows. The following section outlines the

data used in the paper and provides summary statistics and descriptions of the data

cleaning process. Section 3 presents our econometric model and describes the identifi-

cation assumptions. Section 4 presents our results, Section 5 provides a discussion, and

Section 6 concludes.

2 Data

Our data is comprised of four main variables spanning every month between 2006-2015.

First, the United States Federal Bureau of Investigation (FBI) maintains monthly crime

counts by county via the Uniform Crime Reporting Program (UCR, 2004). The UCR cov-

ers the entire U.S. and reports consistent counts of violent crimes including aggravated

assaults and robberies and property crimes including thefts/larceny and vehicle thefts.

Second, we merge the monthly-county crime data with surface-level PM2.5 concentra-

tions. The Air Quality System (AQS), which is managed by Environmental Protection

Agency (EPA), is a network of federal, state, and tribal pollution monitors that measure

ozone, PM2.5, and other pollutants.8 One limitation of the AQS is that not all counties

contain pollution monitors, which results in spatial gaps in the data. To address these

gaps, we use ordinary kriging to interpolate daily PM2.5 concentrations for a 15 km grid

8The data is publicly available from https://aqs.epa.gov/aqsweb/airdata/download_
files.html.
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of the entire continental U.S. We calculate the mean PM2.5 of all grid cells within a county,

then take the average and maximum PM2.5 measures for each county for each month of

the sample.9

Third, we merge data on fire smoke plumes from the National Oceanic and Atmo-

spheric Administration Hazard Mapping System (HMS). The HMS provides daily mea-

sures of smoke plumes based on satellite imagery for the entire U.S. (HMS, 2018; Rolph

et al., 2009; Ruminski et al., 2006). Smoke plumes are outlined and defined by trained

analysts that work alongside and review automated algorithms that can detect plumes

in satellite imagery. The publicly available data includes polygons of all relevant smoke

plumes for all days since August 5, 2005. To be consistent with the kriged pollution mon-

itor data, we grid the smoke plume data and assign a value of 1 if a particular county

contained a grid box that was under a smoke plume for each day of the month of the

sample and 0 if not. We then count the number of days within a month that a county

was under a smoke plume. Figure 1 displays the spatial distribution of the number of

days in our sample covered by a smoke plume using the gridded HMS data or the raw

unadjusted HMS data. The Midwest is lightest in color with up to 15% of the days in the

sample covered by a smoke plume.

A key feature of smoke plumes is that they can be generated by fires that originated

hundreds or thousands of miles from the affected county. This can produce an exogenous

increase in pollutant levels, particularly PM2.5 (Brey et al., 2018; Ruminski et al., 2006).

However, local wind and weather patterns can significantly impact how smoke plumes

are transported. For instance, smoke plumes are often transported in the upper atmo-

9Kriging is a geostatistical interpolation method. Kriged surfaces have been used in previous research
to estimate air pollution exposures (Janssen et al., 2008; Jerrett et al., 2005; Lassman et al., 2017) and ordinary
kriging has been shown to effectively predict air pollution across large-geographic areas (Beelen et al., 2009).
Universal kriging or other predictive models that incorporate land use or satellite based covariates provide
improved prediction performance and more spatially specific surfaces (Beelen et al., 2009; Di et al., 2016;
Mercer et al., 2011; Young et al., 2016). For reference, we use all available federal reference method (FRM)
and FRM-corroborated daily PM2.5 observations in the EPA AQS monitor network. We then krige the
observations to a 15 km grid, which produces a gridded estimate of daily-average PM2.5 concentrations for
each day during the study period. Kriging parameters are as follows: sill = 2.6, range = 8.5, nugget = 0.1.
The parameters were determined using a k-fold cross validation with 10 folds, optimizing R2 while also
maintaining minimal mean bias and mean absolute error.
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sphere and may not significantly affect surface-level air quality, despite being present in

satellite imagery (Brey et al., 2018; Ford et al., 2017; Rolph et al., 2009). This discrepancy

is a source of measurement error: satellite based smoke plumes reported by the HMS

are often poor predictors of surface level air quality. Burkhardt et al. (2018) develops a

method to address this measurement error using surface-level pollution measurements

to probabilistically detect whether the smoke plume affected human exposure. We define

the modified variable as the adjusted HMS variable. Figure 2 shows the spatial distribution

of the fraction of neighbor-adjusted smoke days in our sample (the adjustment procedure

is outlined in Section 3). While the highest frequency of smoke plume days reported by

the raw HMS occurs over the Midwest (Figure 1), the adjusted HMS smoke plume data

indicate that most of that smoke in the Midwest does not affect surface level PM2.5 (Fig-

ure 2). Importantly, Figure 2 shows that the distribution of smoke at the surface level is

dramatically different from the distribution of smoke higher in the atmosphere across the

U.S. We aggregate the smoke plume data to the county-monthly level and merge it with

the crime and pollution data.

Our fourth dataset contains weather information from the Parameter-elevation Re-

gressions on Independent Slopes Model (PRISM, 2017). We again utilize gridded data

on daily maximum temperatures (Celsius), daily minimum temperatures (Celsius), and

daily precipitation (millimeters) at a 4 kilometer resolution. We calculate the monthly

county-level maximum and minimum temperature and average rainfall as the average of

all grid cells within a county for each month in the data.

We collect county-level annual demographic and socioeconomic data from the Amer-

ican Community Survey (US Census, 2017). We investigate the heterogeneity of our main

effect of PM2.5 on violent crime by county median household income (Income), popula-

tion, percent of population white (% White), percent of population with a Bachelors de-

gree (% Bachelors), percent of population living under the poverty threshold (% Poverty),

and median age in the county (Age).

7



2.1 Summary Statistics and Data Cleaning

Our data covers 2,977 counties (99% of all U.S. counties) in the U.S. from 2006-2015. Sum-

mary statistics for the variables used in estimation are displayed in Table 1. Crimes are

presented as monthly counts. We drop observations with negative crime counts for each

category of crime or counts above the 99th percentile of crimes for each category of crime.

This drops 3,650 observations or 1.1% of our sample. We do this because, for example,

several counties in the raw FBI data report more than 14,000 violent crimes in a given

month. These are most likely annual counts that are misreported as monthly counts.10 We

also drop counties that only report crimes on an annual basis, biannual basis, or quarterly

basis. After this cleaning, the average number of violent crimes per county per month is

20.31 with a maximum of 514.

Sixty-three percent of violent crimes are assaults on average. There are 160.5 property

crimes per month on average in our sample, 69% of which are larcenies or thefts. The

monthly mean maximum and minimum temperatures are 18.67 and 6.28 degrees Celsius,

respectively. The average monthly precipitation is 2.78 mm. The mean of the monthly

average PM2.5 level is 9.42 µg/m3 with a minimum of 0.01µg/m3 and a maximum of

87.93 µg/m3. The minimum occurred in Tehama County, California in May 2014 while

the maximum occurred in Lemhi County, Idaho in September 2012. In 2012, Idaho and

Montana experienced a severe fire season with over 1.1 million acres burned.11 The mean

of the monthly maximum PM2.5 level is 19.29 µg/m3 with a minimum of 2.73 µg/m3 and

a maximum of 337.39 µg/m3. The minimum occurred in Archuleta County, Colorado in

February 2013, while the maximum occurred in Okanogan county, Washington in August

2015. The high PM2.5 levels were due to wildfire smoke.

Finally, we provide summary statistics for the two HMS smoke plume count variables

and the demographics. The mean of the raw HMS variable is 2.78, which suggests that

10For example, the city of Chicago, which spans 12 counties, had a total of 17,400 violent crimes in 2015.
This implies an average of only 1,450 violent crimes per month across the 12 counties in the nation’s most
violent city. These statistics were downloaded from the Chicago police department here.

11https://www.claimsjournal.com/news/west/2012/11/07/216957.htm
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a county is covered by a smoke plume for 2.78 days out of a given month, on average.

The maximum value is 31 indicating that a smoke plume was present above at least one

county for an entire month. The neighbor-county adjusted HMS variable is lower, at

0.46. The HMS satellite based smoke plume correction procedure is described in Section

3 below.

3 Model and Identification

We develop a model to investigate the impact of PM2.5 on aggressive behavior as mea-

sured by crime. Our model is as follows:

log[E(Cj
ct)] = γjPM25ct +Xctβ

j + φcy + ξm + ν̂ct, (1)

where Cj
ct is the crime count of crime type j in county c in month t (an observation is a

county-month), PM25ct in our primary analysis is the monthly mean PM2.5 in µg/m3 in

county c in month t, Xct includes average monthly maximum temperature, monthly min-

imum temperature, and monthly precipitation, φcy is a county-by-year fixed effect, ξm is

a month fixed effect, and ν̂ct is a control function. All estimates are performed using Pois-

son regression as Cj
ct is a non-negative count variable. All standard errors are clustered at

the county-level to address within county correlation in the error term.

We use monthly mean PM2.5 as our main measure of PM2.5 rather than monthly max-

imum PM2.5. If fire smoke plumes affect surface level PM2.5 within a county for multiple

days within a month, the monthly average more accurately captures the exposure com-

pared to the monthly maximum. This is important because our instrument, described

below, is the number of days a county is affected by a fire smoke plume in a given month.

As a robustness check, we present our primary results using the monthly maximum PM2.5

measure in Table 7.

Pollution is likely endogenous in Equation 1. For example, PM2.5 and crime are likely

correlated with county specific unobservables such as urban status, population density,
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county or state level policies, and industrial and employment activity. If unaddressed,

these unobservables will lead to biased estimates of γ. We address this endogeneity in two

ways. First, we include county-by-year fixed effects to control for county specific unob-

servables that are either constant within a year or may vary from year to year. Examples of

the former include urban status, long-term pollution laws, and general sociodemograph-

ics. Examples of the latter include changes in population density, police enforcement and

air pollution concentrations over time. We also include month fixed effects to control for

seasonal variation in pollution and crime as well as other confounders such as seasonal

allergens. Importantly, we show that much of the endogeneity is addressed by our fixed

effects.

Second, despite the inclusion of county-by-year and month fixed effects, PM25ct may

still be endogenous. For example, monthly average PM2.5 is an imperfect measure of

short-term pollution exposure. As such, Equation 1 likely suffers from measurement er-

ror. Likewise, there may be county specific cyclical variation in crime and/or PM2.5 that

is not fully captured by month fixed effects that are constant across regions. We use a

control function to address this potentially remaining endogeneity in pollution. Control

functions perform the same function as instrumental variables estimation and are easily

implemented in nonlinear models such as the Poisson routine used in the present setting.

Specifically, we instrument PM25ct with the count of the number of days county c is af-

fected by a fire-smoke plume in month t. To be precise, our smoke plume and pollution

data are collected at the daily level. Thus, on any given day in our sample, HMS=0 if a

smoke plume is not present over location c and HMS=1 if a smoke plume is present over

location c. Crimes are measured at the monthly level so we aggregate the HMS variable to

the monthly level. Our control function assumption, which is identical to an instrumental

variables assumption, is that smoke plumes, which can be generated thousands of miles

away, are correlated with surface-level PM2.5, but do not directly influence crime levels.12

The control function takes the following form :

12To be sure, in Table 6, we present a robustness check in which we drop observations where a fire was
burning in a county in a particular month.
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PM25ct = β1HMSct +Xctβ
CF + φcy + ξm + νct. (2)

Equation 2 includes all second stage regressors and fixed effects included in Equation

1, and is estimated via Ordinary Least Squares (OLS). The smoke plume instrument is

termed, HMSct, and is described in the following paragraphs.

It is well understood among atmospheric scientists that smoke plumes observed via

satellite imagery (i.e., HMS variables) are poor predictors of surface level PM2.5. This is

because smoke plumes that may have been generated hundreds or thousands of miles

away are often transported several kilometers above the Earth’s surface (Brey et al., 2018;

Larsen et al., 2018). Consequently, when a smoke plume is observed in satellite imagery

above a pollution monitor (HMSct = 1), the surface-level pollution monitor will often not

report elevated pollution levels. In other words, despite the presence of a smoke plume

in the upper atmosphere, surface-level pollution is not affected. We follow a procedure,

similar to the methodology used by Brey and Fischer (2016) to retain only surface-level

smoke plumes that impact surface-level air quality.

To adjust the HMS variable, we first calculate county-specific background PM2.5

means (three month seasonal mean) and standard deviations using our daily PM2.5 data.

We calculate these means and standard deviations on non-HMS smoke days (days in

which a smoke plume is not present in the raw satellite imagery). We then correct the

discrepancy between the HMS variable and the surface-level PM2.5. Our adjustment pro-

cedure isolates days when smoke plumes significantly impacted surface-level PM2.5. Our

method adjusts the HMS variable in county c on day t using the PM2.5 and HMS mea-

sure of the nearest neighboring PM2.5 county centroid. For example, suppose we have a

neighboring county k 6= i. We set HMSct = 0 in time period t if HMSkt = 1 but PM2.5

at county centroid k is less than 1.64 standard deviations from the background mean of

county centroid k. Likewise, we set HMSct = 0 if HMSkt = 0 in all neighboring coun-
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ties.13 This variable is called the neighbor-adjusted HMS variable.14 We then aggregate

the neighbor-county adjusted HMS variable to the county-monthly level.15

The validity of the neighbor-adjusted HMS variable as an instrument for PM2.5 rests

on two assumptions. First, because we use PM2.5 in county k to adjust the HMS vari-

able in county c, we must assume that a smoke plume affecting surface level PM2.5 in

location c will also affect surface level PM2.5 in location k. We believe this is a valid as-

sumption as smoke plumes often span many contiguous county boundaries. Though the

neighbor-adjusted HMS variable suffers from a new source of measurement error, this

new measurement error is not as detrimental to our estimates as the measurement error

in the unadjusted HMS variable. Second, we must assume that the background mean

PM2.5 in county c and the background mean PM2.5 in county k are uncorrelated, condi-

tional on our fixed effects and control variables. If these assumptions are valid, then the

neighbor-adjusted HMS variable remains exogenous and is a valid instrument for PM2.5

in county c.16

13This means that PM2.5 on a particular day must be elevated above the 95th percentile of the county-
specific background PM2.5 mean, assuming a normal distribution, for the own-county adjusted HMS vari-
able to equal one.

14Surface-level PM2.5 is less than 1.64 standard deviations of the within-county background mean on
83% of the days in which a smoke plume is present (HMS=1 days). This means that smoke plumes observed
in satellite imagery only increase surface-level PM2.5 more than 1.64 standard deviations above the mean
17% of the time, highlighting the need for this adjustment procedure.

15The spatial distribution of the adjusted data is displayed in Burkhardt et al. (2018). We also show the
spatial distribution of the adjusted data relative to the unadjusted data in Burkhardt et al. (2018). We find
no discernible patterns in the areas that are adjusted.

16In Burkhardt et al. (2018), we test the latter assumption and find that the background means between
county c and county k have a correlation coefficient of 0.32. Thus, the two are not perfectly correlated.
Similar studies such as Keiser et al. (2018) and Deryugina et al. (2016) have used upwind air quality as
an instrument for within county air quality. In these papers, the authors instrument pollution in a given
county i with pollution in an upwind neighboring county. Our IV strategy is slightly different since we
observe whether a county was covered by a smoke plume but not the elevation of the plume. We exploit the
proximity of the neighboring county for smoke exposure (requiring that both counties lie under the same
plume) but assume that non-smoke factors impacting PM2.5 in the neighboring county are exogenous to
county i. Our instrument thus depends on correlation in smoke plumes across counties, not correlation in
PM2.5 across counties, as an upwind analysis would utilize. Smoke plumes travel hundreds to thousands of
miles and span multiple neighboring counties. Thus, an analysis that limits the sample to upwind counties
only would likely produce virtually identical results precisely because a given smoke plume is usually
affecting many contiguous counties, both upwind and downwind. Moreover, Bondy et al. (2018) study
the relationship between daily pollution exposure and crime in London for a two year period. Like ours,
their primary identification strategy relies on a series of high-dimensional fixed effects. However, they
instrument pollution with wind direction as a robustness check. While wind direction is likely uncorrelated
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4 Results

In the following section, we present a series of results. First, we present several specifica-

tions of Equation 1, using violent crimes as the dependent variable, which demonstrate

the robustness of our results and highlights the importance of the county-by-year fixed

effects. We also discuss the first stage control function estimates to highlight the impor-

tance of adjusting the HMS variable. Second, we estimate our model using assaults and

other non-violent crimes as alternative outcome variables. We then explore the poten-

tial mechanisms behind our primary results by exploring regional and sociodemographic

heterogeneity in the primary effects. Lastly, we present robustness checks. All regressions

are estimated in Stata version 14.

4.1 Primary Results

The results of estimating Equation 1 with various sets of fixed effects and control func-

tions are displayed in Table 2. The dependent variable in each column is violent crimes.

Columns 1 and 2 present estimates without control functions. The specification presented

in Column 1 includes county, year, and month fixed effects while the specification pre-

sented in Column 2 includes county-by-year and month fixed effects. If PM2.5 is endoge-

nous, and crime rates and PM2.5 are positively correlated with unobservables that vary

over time within counties, then the coefficient estimates should decline from Column 1

to Column 2. Indeed, we find that the inclusion of the county-by-year fixed effect in Col-

umn 2 slightly reduces the coefficient on PM2.5. For this reason, we use county-by-year

and month fixed effects in all further specifications.17

Columns 3-4 of Table 2 replicate the specification in Column 2 adding two variations

of the control function. The instrument used in Column 3 is the unadjusted or raw HMS

variable. Brey et al. (2018), Burkhardt et al. (2018), and our first stage estimates presented

with daily crime, in their preferred instrumental variables model, the first stage F-statistic is fairly small
(around 13) indicating that wind direction is not the strongest of instruments for daily air pollution.

17We tried other sets of fixed effects such as county-by-year-by-season but these absorbed too much of
the variation in PM2.5 and crimes.
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in Table A.2 show the raw HMS variable is a poor predictor of surface-level PM2.5, which

introduces measurement error. Column 3 of Table 2 illustrates the consequences of this

measurement on our primary estimates. When monthly average PM2.5 is instrumented

with the count of days a county is covered by a smoke plume in the raw HMS data, the

control function is statistically insignificant, rendering the primary coefficient on PM2.5

also statistically insignificant. This result can be attributed to the measurement error be-

tween the raw HMS data and surface-level PM2.5.18

Column 4 instruments PM2.5 using the neighbor-county adjusted HMS variable. In

contrast to the model presented in Column 2, the control function and the coefficient on

PM2.5 are highly statistically significant in this model. Notably, the coefficients on PM2.5

presented in Columns 3-4 are larger than the non-control function estimate presented in

Column 2. One possible explanation is that monthly average PM2.5, the measure used

in each of these models, is an imperfect measure of daily changes in PM2.5. As such, the

correlation estimates presented in Columns 1 and 2 are subject to classical measurement

error, which is corrected to some degree by the control functions. Thus, our preferred

specification is the neighbor-adjusted HMS control function presented in Column 4, and

we use this specification in all of the remaining estimates in the paper.

Next we investigate the effect of changes in PM2.5 on other categories of crime. Ta-

ble 3 displays the results of estimating our primary model (Column 4 of Table 2) using

assaults, other violent crimes (violent minus assault), property crimes, robberies, and

larceny/thefts as dependent variables. Columns 1 and 2 indicate that the violent crime

effect presented in Table 2 is driven exclusively by changes in assaults. Columns 3, 4,

18The first stage control function estimates are presented in Table A.2 in the Appendix. Column 1 of
Table A.2 shows the first stage using the raw HMS variable and Column 2 the first stage estimates using the
neighbor-adjusted HMS variable. The HMS variables in both models is statistically significant, however, the
coefficient in Column 2 is seven times larger than the coefficient in Column 1. Indeed, the model in Column
1 suggests that an additional HMS day increases monthly average PM2.5 by only 0.10 µg/m3. This is a very
small amount given the mean PM2.5 level is 9.42 µg/m3. In contrast, the model in Column 2 suggests that
an additional HMS day increases the monthly average PM2.5 by 0.73 µg/m3. Given these findings and our
discussion in Section 3, we are confident that the adjusted HMS variable produces a stronger instrument
than the raw HMS variable. Estimates using an own-county adjusted HMS variable are similar. Two-stage
least squares estimates of the model produce Cragg-Donald weak identification F-statistics of 9,930 for the
raw HMS variable and 68,000 for the adjusted HMS variable, respectively.
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and 5 indicate changes in PM2.5 are not significantly correlated with property crimes, rob-

beries, or thefts. In fact, the coefficients in these three columns are not only statistically

insignificant but are indicative of null estimates when compared to the magnitude of the

effect presented in Column 1.19 Overall, the results presented in Tables 2 and 3 align with

the findings of Herrnstadt et al. (2016) and Burkhardt et al. (2018).

4.2 Heterogeneity in The Treatment Effect

We now turn to evaluating heterogeneity in the treatment effect. First, we generate

dummy variables for nine regions of the U.S. defined by the Census Bureau. The Cen-

sus Bureau regions include New England, Mid-Atlantic, East North Central, West North

Central, South Atlantic, East South Central, West South Central, Mountain, and Pacific.

The states included in each region are listed in the Appendix (Section 9). We interact the

PM2.5 variable with the region dummy variables (New England is the base case). If the

composition of PM2.5 throughout the U.S. is homogeneous, and the effects we estimated

above are driven purely by physiological factors, then we hypothesize the treatment effect

should be uniform across the U.S.

Table 4 displays the estimates of our regional analysis. The results indicate no statisti-

cal differences across Census Bureau regions of the U.S.20

19The sample size differs between specifications due to the number of zeros or missing values in the
dependent variables within fixed effects clusters.

20Results using Bureau of Economic Analysis regions are similar. The effect is statistically insignificantly
largest in New England, the omitted category, which is consistent with our demographic estimates below.
One caveat of these results is that the effects may be heterogeneous at a different geographic scale than the
Census Bureau regions or our data may lack sufficient power to identify regional heterogeneity.

The results presented in Table 4 suggest virtually no differences in treatment effects across the U.S. A
possible explanation for the lack of regional heterogeneity is that pollution affects behavior through phys-
iological mechanisms, which are uniform in geographic scope, but are modified by socioeconomic condi-
tions. To test for heterogeneous effects due to socioeconomic differences, we generate dummy variables
indicating quartiles of county-level demographics and interact these dummy quartiles with PM2.5.

The results of the demographic heterogeneity analysis are presented in Table 5. Column 1 suggests that
the effects are largest (statistically insignificant) in areas with the highest median household income (F-
statistic p-value of joint significance for four presented coefficients is 0.009). Column 2 provides evidence
that the effects are largest (again, statistically insignificant) in the largest metropolitan areas. The coefficients
on each of the population quartile interactions are negative and jointly statistically significant with the
coefficient on PM2.5 (F-statistic p-value = 0.007). This result is expected given there are more crimes in
more populated areas. However, the results remain significant for regions with low populations. Column
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We look at summary statistics of the demographic variables by Census Bureau region

to compare the results in Table 5 to the regional estimates in Table 4. Summary statistics

are presented in the Appendix (Section 9). The results in these two tables indicate the

effect is moderately larger in New England and in wealthier, whiter, and older counties.

Importantly, the summary statistics in Table A.1 in the Appendix indicate that New Eng-

land has the largest fraction of the population that is white, has the highest median age,

and the lowest poverty rate. Overall, our heterogeneity results indicate the most impor-

tant explanatory factor in the relationship between pollution and crime is age, and the

results are not ameliorated by higher incomes.

4.3 Robustness Checks

In the following section, we present several robustness checks including adding flexible

functions of temperature and alternative measures of pollution. In each of the following

specifications, we focus on violent crimes as the dependent variable.

Table 6 presents our main robustness checks. Column 1 includes and interaction term

between pollution (PM2.5) and the monthly average maximum temperature. The results

suggest that the effect of pollution is decreasing in maximum temperature but not sig-

nificantly so. In Column 2, we replace the monthly average maximum temperature with

a restricted cubic spline of monthly average maximum temperature. The coefficient of

interest is largely unchanged, going from 0.0053 in Table 2 to 0.0057 in this alternative

specification.

Wildfires can be extremely disruptive in the counties in which they burn. Thus, one

might be concerned that our results are driven by counties in which a wildfire is burning.

3 indicates that the effect is stronger in counties with a higher fraction of the population that is white. The
effect is 50% smaller in counties in the first quartile for fraction of the population that is white. Column
4 indicates that average educational attainment does not significantly impact the effect of pollution on
aggressive behavior. Column 5 indicates that the effect is generally largest in the second quartile of poverty
rates, or the effect is largest in relatively wealthy counties, consistent with the income effects presented in
Column 1. Finally, column 6 indicates that the effect is statistically significantly largest in counties with
older populations. The latter result indicates that older populations are more susceptible to physiological
impacts of pollution.
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For instance, it might be the case that more looting and confrontation occurs in counties

in which an evacuation order is in place. To test this, we estimate our model dropping

observations in which a fire is burning within a county in a given month.21 The results

are displayed in Column 3 of Table 6. The coefficient on PM2.5 declines slightly from our

main estimates, which could be due to an evacuation effect or simply the different sample.

Importantly, the coefficient remains statistically significant.

Finally, we re-estimate Table 2 replacing the monthly average of PM2.5 (over all days

within a county-month) with the monthly maximum of PM2.5 (over all days within a

county-month). The two measures capture different aspects of the distribution of PM2.5

within a county within a month. The average better reflects periods in which the county

has elevated PM2.5 levels for multiple days within a month, while the maximum better

reflects periods in which the county may have only had one extreme PM2.5 event day.

The results are presented in Table 7. Although the point estimates on PM2.5 differ from

those presented in Table 2 (which can be attributed to the different measure of PM2.5), the

results are qualitatively identical.

5 Discussion

The results in this paper indicate that changes in PM2.5 affect the propensity for violent

crimes on a population level with a emphasis on assaults. Assaults are likely indicative of

impulsive and aggressive behavior. Thus, our estimates are consistent with recent work

in epidemiology that suggests fine particulate matter air pollution (PM2.5) can induce

biological processes, like systemic inflammation, which could potentially exacerbate ag-

gressive behavior (Brook et al., 2004; Cunningham et al., 2009; Donaldson et al., 2001).

Furthermore, we find no relationship between PM2.5 and non-violent property crimes,

which are not generally crimes of passion and thus not likely to be driven by the same

impulsive mechanisms.

21Short (2017) reports the latitude and longitude of wildfire ignitions as well as the discovery and end
dates. We exclude county-days with an active fire burning.
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Our primary results are also consistent with Herrnstadt et al. (2016) and Burkhardt

et al. (2018). Herrnstadt et al. (2016) uses different data and a different identification

strategy while Burkhardt et al. (2018) uses daily data but evaluates a smaller geographic

sample. Together, our papers provide compelling evidence of a previously overlooked

cost of pollution.

A key feature of our data is that it spans the entire U.S., allowing us to explore sev-

eral dimensions of effect heterogeneity. The results presented in Section 4.2 indicate no

statistical differences in the effects across regions. However, we find strong statistical

differences across age brackets, which is consistent with older populations being more

susceptible to changes in air pollution. While our data does not allow us to identify the

precise physiological processes driving our primary results, our results point to an im-

portant and previously unknown impact of pollution that is present in all parts of the

country. Our findings also suggest further research on the modifying factors behind the

estimated effects is warranted. For instance, although our data indicates no statistical dif-

ferences across geographic regions of the U.S., the species of PM2.5 varies temporally and

geographically and these differences in species may present different neurological toxici-

ties. Future research should thus explore differences in the relationship between pollution

exposure and behavioral outcomes by PM speciation.

The estimates in this paper are not without limitations. Our data are monthly averages

of PM2.5 and are imperfect measures of short-term or acute exposure to changes in PM2.5.

For instance, using data on daily pollution and crime, Burkhardt et al. (2018) show that

the effect of changes in PM2.5 on violent crime is highly contemporaneous with virtually

no effect even in 1 day lags. Thus, we expect measurement error is present in PM2.5 in

Equation 1. An additional concern is that we do not have PM2.5 speciation data, which

could be an important omitted variable in the present analysis.
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6 Conclusion

This paper identifies the effect of changes in pollution on criminal activity at the monthly

level across the entire U.S. We have three primary data sources at the monthly-county

level spanning 2006-2015. First, we use PM2.5 measures from Lassman et al. (2017).

Second, we observe monthly crime counts from the FBI UCR program. Lastly, we use

NOAA’s HMS smoke plume data to generate an instrument for PM2.5. Our identifica-

tion strategy employs a series of high-dimensional fixed effects and a control function to

address endogeneity in PM2.5.

Our primary finding is that a 1 µg/m3 increase in the monthly average PM2.5 increases

monthly violent crime rates by 0.53%, nearly all of which is driven by increases in assaults.

This estimate translates to an additional 327 additional violent crimes per month on av-

erage across the contiguous U.S. Alternatively, changes in PM2.5 have no statistically sig-

nificant effect on other violent or non-violent crimes, which indicates that an increase in

PM2.5 can act as a short-term irritant, which can increase the propensity for violent behav-

ior. Importantly, we find that the effects are present across the entire U.S. with differences

by age bracket. Our results are robust to a variety of tests and alternative specifications.

Overall, our results are consistent with previous estimates and highlight a key social cost

of pollution that is currently absent from policy discussions.
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7 Tables

Table 1: Summary Statistics
Variable Mean Std. Dev. Min. Max. N

Violent Crimes 20.31 52.08 0 514 328165
Assaults 12.88 30.31 0 291 323896
Robbery 4.64 15.77 0 187 239712
Property Crimes 160.49 349.46 0 3252 323116
Larceny/Theft 111.34 237.59 0 2140 312659
Mean Max Temperature (C) 18.62 10.40 -14.23 43.23 328165
Mean Min Temperature (C) 6.28 9.76 -27.26 28.73 328165
Mean Precipitation (mm) 2.78 2.076 0 35.59 328165
Mean PM2.5 (µg/m3) 9.42 3.25 0.01 87.93 328165
Max PM2.5 (µg/m3) 19.29 7.90 2.73 337.39 328165
Raw HMS 2.78 4.67 0 31 328165
Neighbor Adjusted HMS 0.46 1.31 0 26 328165
Income 43386.85 11174.82 18869 112021 328165
Population 77436.23 157356.00 60 3156440 328165
% White 79.53 18.57 2.1 99.20 328165
% Bachelors 20.29 8.74 1.9 64.20 328165
% Poverty 15.37 6.31 0 52.38 328165
Median Age 40.41 4.98 21.6 63.8 328165

Notes: All crimes reported as counts per county per month. HMS variables are count variables.
For example, the mean of the raw HMS variable indicates that the average county is covered by
a smoke plume for 2.7 days a month in the sample. Demographic Summary Statistics by region
are reported in Table A.1 in the Appendix.
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Table 2: Primary Violent Crime Results
(1) (2) (3) (4)

PM2.5 0.0011* 0.0009** 0.0051 0.0053***
(0.0006) (0.0004) (0.0035) (0.0015)

Mean Max Temp 0.0051*** 0.0056*** 0.0064*** 0.0064***
(0.0008) (0.0007) (0.0010) (0.0007)

Mean Min Temp 0.0043*** 0.0041*** 0.0035*** 0.0034***
(0.0010) (0.0009) (0.0009) (0.0009)

Mean Precip 0.0011 0.0006 0.0018 0.0018*
(0.0009) (0.0009) (0.0011) (0.0010)

CF Residuals -0.0043 -0.0050***
(0.0035) (0.0016)

year FE Y
month FE Y Y Y Y
county FE Y
county-year FE Y Y Y
Instruments Used None None HMS1 HMS2
N 328165 328165 328165 328165

Notes: Dependent variable is violent crimes in each specification. HMS1 is
the raw HMS smoke plume variable. HMS2 is the nearest neighbor county
adjusted HMS variable. CF residuals are control function residuals. Standard
errors clustered at the county level. *** denotes significance at 1% level, ** at
5% level, * at 10% level.
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Table 3: Other Crimes
(1) (2) (3) (4) (5)

Assault Other Violent Property Robbery Larceny
PM2.5 0.0059*** 0.0010 0.0007 0.0005 0.0007

(0.0017) (0.0015) (0.0009) (0.0018) (0.0008)
Mean Max Temp 0.0091*** 0.0025*** 0.0063*** 0.0021* 0.0064***

(0.0008) (0.0009) (0.0007) (0.0012) (0.0007)
Mean Min Temp 0.0019* 0.0065*** 0.0093*** 0.0084*** 0.0093***

(0.0010) (0.0009) (0.0009) (0.0012) (0.0009)
Mean Precip 0.0014 -0.0000 0.0012** 0.0001 0.0005

(0.0010) (0.0008) (0.0006) (0.0010) (0.0005)
CF Residuals -0.0050*** -0.0019 -0.0011 -0.0030 -0.0007

(0.0017) (0.0016) (0.0010) (0.0018) (0.0009)
county-year FE Y Y Y Y Y
month FE Y Y Y Y Y
N 323896 183924 313116 239712 312659

Notes: Each of the columns in this table use the specification from Column 5 of Table 2 but with
alternative dependent variables. Other Violent is violent crimes less assaults. The instrument
used to generate the control functions in all models is the nearest neighbor adjusted HMS vari-
able. Standard errors clustered at the county level. *** denotes significance at 1% level, ** at 5%
level, * at 10% level.
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Table 4: Heterogeneity By Region of the U.S.
(1)

PM2.5 0.0074***
(0.0024)

PM2.5*1(Mid-Atlantic) -0.0030
(0.0021)

PM2.5*1(East North Central) -0.0017
(0.0020)

PM2.5*1(West North Central) -0.0014
(0.0023)

PM2.5*1(South Atlantic) -0.0019
(0.0022)

PM2.5*1(East South Central) -0.0006
(0.0025)

PM2.5*1(West South Central) -0.0018
(0.0022)

PM2.5*1(Mountain) -0.0027
(0.0020)

PM2.5*1(Pacific) -0.0027
(0.0019)

month FE Y
county-year FE Y
N 328165

Notes: This table replicates our primary specifica-
tion, Column 5 of Table 2, but interacts PM2.5 with
dummy variables for regions of the U.S. defined
by the Census Bureau. The regions are outlined
in Appendix 9. The omitted category is region 1,
New England. The dependent variable is violent
crimes. The regression includes temperature and
precipitation controls as well as a control function.
Standard errors clustered at the county level. ***
denotes significance at 1% level, ** at 5% level, * at
10% level.
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Table 5: Heterogeneity By Demographics
(1) (2) (3) (4) (5) (6)

Demographic Defining X Income Population % White % Bachelors % Poverty Age
PM2.5*X First Quartile -0.0007 -0.0076 -0.0040*** 0.0005 0.0009 -0.0087***

(0.0012) (0.0049) (0.0014) (0.0010) (0.0011) (0.0026)
PM2.5*X Second Quartile -0.0014 -0.0039 -0.0016 0.0000 0.0020** -0.0083***

(0.0012) (0.0042) (0.0015) (0.0010) (0.0008) (0.0027)
PM2.5*X Third Quartile -0.0007 -0.0006 -0.0011 0.0010 0.0009 -0.0062***

(0.0008) (0.0016) (0.0015) (0.0008) (0.0009) (0.0028)
PM2.5 0.0059*** 0.0058*** 0.0080*** 0.0051*** 0.0043*** 0.0130***

(0.0018) (0.0017) (0.0019) (0.0016) (0.0015) (0.0029)
month FE Y Y Y Y Y Y
county-year FE Y Y Y Y Y Y
N 328165 328165 328165 328165 328165 328165

Notes: This table replicates our primary specification, Column 4 of Table 2, but interacts PM2.5 with quartiles of demographic
variables. The omitted category in each specification is the fourth quartile interacted with PM2.5. Therefore, the coefficient
on PM2.5 is the effect of an increase in PM2.5 for counties in the fourth quartile of the demographic variable. For example,
Column 1 includes interactions of PM2.5 with quartiles of median household income and Column 2 includes interactions
of PM2.5 with quartiles of population. The dependent variable is violent crimes in each specification. The demographics in
columns 3, 4, 5, and 6 are the fraction of the population that is white, the fraction of the population with a bachelors degree,
the fraction of the population that is white, the fraction of the population in poverty, and the median age in the county. All
regressions include temperature and precipitation controls as well as a control function. The coefficients are not shown for
brevity. Standard errors clustered at the county level. *** denotes significance at 1% level, ** at 5% level, * at 10% level.
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Table 6: Robustness Checks: Temperature and Fires
(1) (2) (3)

Violent Violent Violent
temp spline fires = 0

PM2.5 0.0059*** 0.0057*** 0.0049***
(0.0018) (0.0015) (0.0017)

PM2.5*Mean Max Temp -0.0000
(0.0000)

Mean Max Temp 0.0067*** 0.0064***
(0.0009) (0.0007)

Mean Min Temp 0.0034*** 0.0035*** 0.0039***
(0.0009) (0.0010) (0.0009)

Mean Precip 0.0019* 0.0015 0.0011
(0.0010) (0.0010) (0.0010)

CF Residuals -0.0052*** -0.0050*** -0.0043**
(0.0016) (0.0016) (0.0017)

county-year FE Y Y Y
month FE Y Y Y
N 328165 328165 322005

Notes: This table provides robustness checks for our primary specification,
Column 5 of Table 2. Column 1 includes an interaction between PM2.5 and
Mean Maximum Temperature, Column 2 includes a restricted cubic spline
of Mean Maximum Temperature, and Column 3 drops observations for a
particular county in which a fire is burning within that county in the month
of sample. The instrument used to generate the control functions in each
specification is the nearest neighbor adjusted HMS variable. Standard errors
clustered at the county level. *** denotes significance at 1% level, ** at 5%
level, * at 10% level.

34



Table 7: Robustness Check: Primary Violent Crime Results Using Max PM2.5

(1) (2) (3) (4) (5)
Max PM2.5 0.0007*** 0.0007*** 0.0016 0.0017*** 0.0016***

(0.0002) (0.0002) (0.0011) (0.0004) (0.0005)
Mean Max Temp 0.0050*** 0.0056*** 0.0058*** 0.0059*** 0.0059***

(0.0008) (0.0007) (0.0008) (0.0007) (0.0007)
Mean Min Temp 0.0043*** 0.0040*** 0.0040*** 0.0039*** 0.0040***

(0.0010) (0.0009) (0.0009) (0.0009) (0.0009)
Mean Precipitation 0.0010 0.0006 0.0010 0.0010 0.0010

(0.0009) (0.0009) (0.0008) (0.0009) (0.0009)
CF Residuals -0.0009 -0.0013*** -0.0011**

(0.0011) (0.0004) (0.0004)
year FE Y
month FE Y Y Y Y Y
county FE Y
county-year FE Y Y Y Y
Instruments Used None None HMS1 HMS2 HMS3
N 328165 328165 328165 328165 328165

Notes: This table replicates our primary table, Table 2, using the county-month Maximum
PM2.5 rather than the county-month mean PM2.5. Dependent variable is violent crimes in
each specification. HMS1 is the raw HMS smoke plume variable. HMS2 is the own county
adjusted HMS variable. HMS3 is the nearest neighbor county adjusted HMS variable. CF
residuals are control function residuals. Standard errors clustered at the county level. ***
denotes significance at 1% level, ** at 5% level, * at 10% level.
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8 Figures
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Figure 1: The color scale denotes the fraction of days in sample covered by a fire smoke
plume observed from satellites and documented by the NOAA HMS smoke product (raw
HMS variable).
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Figure 2: The color scale denotes the fraction of days in sample covered by the neighbor-
adjusted fire smoke plume data (note the change in scale).
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Online Appendix

9 Further Information on Regional Analysis

Census Bureau Divisions of the U.S.

• Division 1: New England (Connecticut, Maine, Massachusetts, New Hampshire,

Rhode Island, and Vermont)

• Division 2: Mid-Atlantic (New Jersey, New York, and Pennsylvania)

• Division 3: East North Central (Illinois, Indiana, Michigan, Ohio, and Wisconsin)

• Division 4: West North Central (Iowa, Kansas, Minnesota, Missouri, Nebraska,

North Dakota, and South Dakota)

• Division 5: South Atlantic (Delaware, Florida, Georgia, Maryland, North Carolina,

South Carolina, Virginia, District of Columbia, and West Virginia)

• Division 6: East South Central (Alabama, Kentucky, Mississippi, and Tennessee)

• Division 7: West South Central (Arkansas, Louisiana, Oklahoma, and Texas)

• Division 8: Mountain (Arizona, Colorado, Idaho, Montana, Nevada, New Mexico,

Utah, and Wyoming)

• Division 9: Pacific (Alaska, California, Hawaii, Oregon, and Washington)
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10 First Stage Estimates

Table A.2: First Stage Regression
(1) (2)

Raw HMS 0.1077***
(0.0037)

Neighbor-adjusted HMS 0.7253***
(0.0113)

Mean Max Temp -0.2436*** -0.2412***
(0.0082) (0.0077)

Mean Min Temp 0.1870*** 0.1788***
(0.0121) (0.0115)

Mean Precip -0.2713*** -0.2446***
(0.0071) (0.0065)

county-year FE Y Y
month FE Y Y
R-squared 0.616 0.669
N 328165 328165

Notes: Standard errors clustered at the county level. *** de-
notes significance at 1% level, ** at 5% level, * at 10% level.
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